
In a 2007 study in Portugal, scientists suggested control of the fungus on oil palms would benefit from further consideration of the process as one of white rot. Ganoderma is an extraordinary organism capable exclusively of degrading lignin to carbon dioxide and water; celluloses are then available as nutrients for the fungus. It is necessary to consider this mode of attack as a white rot involving lignin biodegradation, for integrated control. The existing literature does not report this area and appears to be concerned particularly with the mode of spread and molecular biology of Ganoderma. The white rot perception opens up new fields in breeding/selecting for resistant cultivars of oil palms with high lignin content, ensuring the conditions for lignin decomposition are reduced, and simply sealing damaged oil palms to stop decay. The spread likely is by spores rather than roots. The knowledge gained can be employed in the rapid degradation of oil palm waste on the plantation floor by inoculating suitable fungi, and/or treating the waste more appropriately (e.g. chipping and spreading over the floor rather than windrowing). Endophytic bacteria are organisms inhabiting plant organs that at some time in their life cycles can colonize the internal plant tissues without causing apparent harm to the host. Introducing endophytic bacteria to the roots to control plant disease is to manipulate the indigenous bacterial communities of the roots in a manner, which leads to enhanced suppression of soil-borne pathogens. The use of endophytic bacteria should thus be preferred to other biological control agents, as they are internal colonizers, with better ability to compete within the vascular systems, limiting Ganoderma for both nutrients and space during its proliferation. Two bacterial isolates, Burkholderia cepacia(B3) and Pseudomonas aeruginosa(P3) were selected for evaluation in the glasshouse for their efficacy in enhancing growth and subsequent suppression of the spread of BSR in oil palm seedlings.
Little leaf syndrome has not been fully explained, but has often been confused with boron deficiency. The growing point is damaged, sometimes by Oryctes beetles. Small, distorted leaves resembling a boron deficiency emerge. This is often followed by secondary pathogenic infections in the spear that can lead to spear rot and palm death.